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ABSTRACT 
Machine learning (ML), artificial intelligence (AI), and computational 

photography (CP) are pushing the boundaries of how electro-optical (EO) and 
infra-red (IR) sensors are being used. Especially within military environments, 
users are asking much more from EO and IR sensor suites. While hardware 
capability continues to advance the state of the art, software has become the true 
differentiator for how well these sensor platforms perform for the warfighter. This 
paper presents work that Consolidated Resource Imaging (CRI) has been 
developing in the areas of machine learning and computational photography. In 
this effort, we will discuss two areas of understanding: imagery meant for machine 
vision and imagery meant for human consumption. We will show how the 
intersection of machine learning and computational photography allow the 
symbiotic relationship between the human and the computer.  
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1. INTRODUCTION 

 Computational imaging tools have revolutionized 
digital imaging, allowing information to be 
captured and details to be resolved that once 
seemed only possible in science fiction. As 
consumer digital cameras and smartphones evolve 
with smaller more powerful electronics and 
increase in computational power, computational 
tools have become an integral part of modern 

cameras. Algorithms are used to reduce noise, 
extend dynamic range, improve skin tone 
rendition and general color fidelity. In these 
examples the computational tools are part of the 
system and are executed automatically and 
invisibly as images are captured. In the scientific 
community, computational tools are also a part of 
the imaging system however they are typically 
executed after the fact in a post processes 
performed minutes, days or even months after 
capture. The post processes are normally agnostic 
with respect to camera and optics selection and 
even capture settings. The algorithms used in the 
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different scientific disciplines are often quite 
sophisticated compared to their consumer versions 
and that sophistication requires significantly more 
processing power than has not been possible in 
consumer/mobile devices until very recently. The 
multiple high-resolution uncompressed images in 
the data sets require a lot of memory and the 
execution speed of the sophisticated algorithms is 
directly proportional to the processing speed and 
parallel computing capacity. Another reason the 
scientific computational tools are executed after 
the fact is the necessity of an operator to set the 
multitude of parameters, testing the data sets to 
find the right balance between variables. Among 
the scientific disciplines such as astronomy and 
microscopy, the computational processes exist as a 
wholly separate function from the image 
acquisition where an abundance of computing 
power is available. The extra horsepower allows 
even more complex computational analysis that 
can aid in identifying the point spread function 
(PSF) of the blur/distortion. Once this is known 
the correct algorithms and settings are easy to 
identify. Applying this capability in real or near 
real time for use in “buttoned down” vehicles or 
for rapid analytics requires additional processing.  

This paper seeks to propose a third method 
somewhere between the brute force of trial and 
error, and the computationally expensive analysis 
of the captured images. It lays out the architecture 
for a comprehensive, integrated, end to end system 
where the sensor, optics, control hardware, storage 
and processing pipeline all work together as an 
entity. A total system where acquisition 
parameters and processing parameters are not just 
designed to be complimentary, but one informs the 
other. . . they are mutually dependent.  

The first step is to identify the processing 
objectives, the various types of distortion that 
we’re trying to correct or filter out. These include 
extreme Low-Light situations where pixel values 
from multiple underexposed frames are essentially 

summed build up a single well exposed, sharp 
image. General noise reduction and bit depth 
increase will make the output image robust 
enough to withstand very aggressive deblur 
processing. The system also accommodates 
atmospheric blurring from particulate and vapor 
compression as well as the variable distortions 
from unevenly heated air cells along the line of 
sight. Finally, assuming a dataset of well exposed, 
reasonably clear images with a minimum sample 
rate, the system can output super resolution 
images with extremely high detail recovery and a 
resolution increase up to 50 percent of the 
original. Next is a description of the system 
concepts and criteria for selecting system 
components beginning with the camera and how it 
differs from those selected for a traditional long-
range remote sensing system. The unique camera 
control functions are described including one of its 
most critical functions, an asymmetric sensor 
read-out trigger. This trigger concept will allow a 
single high frame rate camera to generate real time 
UHD video for the operator as well as the high-
speed sequential datasets for processing. It will 
also provide the option of capturing variable 
exposure sequential frames from HDR processing. 
The PCIe camera interface is described in the 
context of the low-level image data output format 
this interface makes possible as well as the 
platform and electro-optical system (EOS) 
metadata that makes the automatic processing 
possible. Following the process chain, the CS2 
image data moves over the PCIe BUS to the GPU 
for transcoding. Depending on how the frames are 
tagged they’re either converted to a real-time 
video stream or to a format optimized for temporal 
sampling multi-frame super resolution. Given the 
potential for overwhelming the data storage 
infrastructure, a more efficient approach to 
archiving is presented. This includes a rethinking 
of how the original capture frames are viewed in 
this unique imaging solution.  
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There are hundreds of techniques and processes 
available for enhancing photographic images and 
without identifying which ones are appropriate for 
a set of images and how they should be applied, 
they are all useless. Based on previous testing of 
long-range terrestrial images, certain common 
features have been identified for a specific target 
distance, level of magnification, pixel size, 
environmental conditions, etc. By using the EOS 
and platform metadata a database table can be 
generated that identifies the ideal stacking and 
deconvolution methods for each dataset. This 
metadata driven approach works for both onboard 
processing as well as post processing.  

Since the system being proposed is intended for a 
high-speed aerial platform, this document explores 
the benefits and costs of implementing a forward 
motion compensation mechanism as well as a 
short analysis of whether it is actually a 
requirement. While the platform is always moving 
there are often various objects in frame moving 
about in different directions and at different 
speeds. Since each output image (surveillance 
asset) is made up of multiple input images, the 
impact of object motion is explored.  

There are dozens of stacking and deconvolution 
methods publicly available for image 
enhancement, but the ones presented here have 
been extensively tested together on long focal 
length terrestrial images. The specific stacking 
methodology is based on an open source 
implementation and is laid out step by step in this 
document. Next up is an outline of the open source 
deconvolution steps including the specific 
algorithms, blur kernel types and parameters that 
have been used for the testing the concept 
validation. The source code for both is available in 
a separate document.  

There are two fundamental versions of this 
system; One where the image data and associated 
metadata are transcoded and formatted for the 

respective pipelines so that they use minimal 
storage space even though the ultimate output 
assets will exceed the detail and quality of 
conventional output assets of a similar resolution 
and frequency. The other version includes the 
same transcoding and formatting as the former but 
with an onboard processing framework for the 
advanced pipeline, so the finished assets are 
completed as the input images are acquired. For 
the onboard processing version, multi-camera 
configuration is also presented.  

2. Computational Photography Filters 
 
The processing objectives have been broken down 
into five categories, each requiring specific 
algorithms and sets of parameters to achieve 
optimal results. A description of the key ideas are 
presented.  
 
2.1. Low-light Image Recovery 

Normally, capturing an image in low light requires 
either increasing the gain enough to capture an 
image at a normal integration or using a long 
enough integration time to fill the electron well 
capacity. With the increased gain comes so much 
noise it’s difficult to differentiate ground truth 
detail from random noise while the long exposure 
makes it impossible to capture a sharp image if 
either the camera or subjects are moving. The 
processed solution uses a high gain coupled with a 
very short integration time and multiple quickly 
captured frames. Fast enough to not only stop 
motion in a single frame but stop motion across 
the entire pre-stack sample set. With multiple 
high-noise, low-light, sharp frames, the light 
reflected off the ground truth features in the image 
frame, as low as it is, can be summed from the 
multiple nearly identical frames in the dataset. The 
noise however, being rand and so differently 
distributed in each frame, can be subtracted. The 
resulting image has the sharpness of a fast 
integration time with the full rich tonal range 
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expected in a well exposed image but virtually 
none of the random noise. Since multiple frames 
are used, detail can be enhanced as well.  

 
 

 
 

2.2. Noise Reduction and Bit Depth 
Increase 

The second type of correction is Noise-Reduction 
Bit-Depth Increase. While this is similar to the 
previous Low-Light process, there is typically 
enough light for proper illumination however most 
images still suffer from random noise. While the 
noise is usually not detrimental to an image for 
simple viewing, it is absolutely an obstacle to any 
post sharpening, deblurring, contrast or exposure 
adjustments, etc. The noise makes an image 
intolerant to everything but the most subtle 
adjustments. With the multiple frames that each 
have full tonal range, the processing is focused on 
identifying ground truth features and rejecting the 
random noise. The resulting output image is 
virtually noise free with well-defined features. 
While the image will not look significantly 
sharper after the first phase of processing than any 

individual input image, it could be described as 
information rich, with a higher bit depth than the 
input images so that it can withstand the not 
insignificant stress of the 
deblurring/deconvolution processes as well as the 
regular color and tonality adjustments.  

 
 

 
 

 
2.3. Atmospheric Distortion 

The third type of correction/recovery is 
Atmospheric Distortion. The atmosphere has a 
subtle refractive index that changes with 
temperature. As the sun heats up the ground, 
rooftops and roadways, the different textures and 
colors of the objects re-radiate the absorbed 
thermal energy in localized columns. As these 
columns rise through the cooler ambient air, they 
either remain as vertical columns of varied 
temperature and therefore varied refractive indices 
or the wind will break them up into varied 
swirling cells. When the camera system is pointing 
at an oblique angle, the line of sight must past 
through the cells and/or columns of unevenly 
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heated air with vary refractive indices creating a 
scintillation effect making it impossible to capture 
any straight lines in the frame and generally 
creating and image with a random distortion 
pattern across the frame. Since this distortion 
pattern is random and constantly changing over 
time, when multiple high-speed frames are 
captured, they can be compared to one another to 
identify the ground truth features then to 
reassemble in a single more accurate and clear 
output frame.  

2.4. Atmospheric Compression 

The fourth type of correction/recovery is 
Atmospheric Compression. Whether its moisture, 
smoke, dust or something else suspended in the 
air, as focal length increases so does the 
compression of the particulates in the line of site. 
The effect is to significantly reduce contrast and 
fidelity as if the camera were shooting through 
gauze. Even on an apparently clear day, as focal 
lengths increase, the compression effects become 
increasingly objectionable. By stacking multiple, 
quickly captured sequential frames, the common 
features can be reinforced and built up while 
eliminating noise and increasing bit dept. This 
resulting combination can be aggressively 
deblurred yielding a final output the is very near 
the diffraction limited ideal.  

 

 

2.5. Super Resolution 

The fifth type of correction discussed here is a 
version of Super-Resolution where in addition to 
the typical detail recovery in the other types of 
correction, it’s possible to increase resolution up 
to 50 percent. To achieve this particular result, 
certain conditions must be met such as, adequate 
light for a normal exposure for the integration time 
and native sensitivity of the camera’s sensor. 
Pushing the sensitivity several stops is fine up to 
the point where the noise starts to become 
objectionable in a single input frame. It’s also key 
that there be a high degree of transparency 
minimal atmospheric compression of suspended 
particulate. Finally, there needs to be minimal 
atmospheric distortion from uneven ground 
radiation. When these conditions are met, all the 
processing and image reconstruction is starting 
with what would be described as a set of ideal 
images with normal noise, adequate exposure and 
minimal atmospheric degradation. Each frame in 
the set will contain uniformly resolved details so 
that the algorithm will have many more consistent 
segments to use in the stack to build up a cleaner 
better resolved output. Finally, if the images in the 
data set are oversampled, it’s possible to increase 
the resolution by as much as 50 percent over the 
original input images. In other words, using 
12MPix input images can yield a high-quality 
output of 28MPix.  
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3. Object Detection and Classification 
 
The advent of large format (29 Megapixel and 

larger) EO machine vision cameras has created an 
opportunity to develop imaging systems that can 
cover large areas. The amount of data generated 
from wide area surveillance in the air and on the 
ground is truly staggering and each image contains 
an unbelievable amount of information.  

Due to the target-rich nature of overhead imagery 
and ground based imagery, there is an opportunity 
to use (ML) algorithms to enhance the value of the 
imagery. Recently, ML algorithms have begun to 
be trained for automated target recognition tasks 
using satellite and overhead imagery. Similarly, 
this functionality has been demonstrated with 
ground-based systems. For example, during the last 
year a competition hosted by ESRI [1] and another 
by NATO [2] demonstrated how a deep neural 
network called RetinaNet [3] could be trained to 
provide excellent automated detection for vehicles. 
Various auto-tracking techniques have also been 
applied to EO data demonstrating some ability to 
track designated vehicles through traffic; however 
variable lighting and resolution can degrade the 
process. The development of robust automated 
target identification algorithms which are capable 
of tracking targets through variations in resolution 
caused by conditions varying from morning to late 
evening, bright and overcast days and changes in 
altitude greatly enhance the value of overhead 
imagery and expand mission capabilities. 

 
3.1. Datasets 
 
CRI has petabytes of imagery data captured in the 
air and on the ground. This same imagery has been 
captured in the continental US and also outside of 
the US. The imagery subject ranges from forest 

fires to college and professional football games to 
engagements in the Middle East.  
 
CRI is developing this large data set to be used for 
various ML techniques. The large part of this 
process is created labeled datasets.  
 
3.2. Transfer Learning 

 
Transfer learning is being used to retrain RetinaNet 
for various object detection including ground 
vehicles and marine based objects such as naval 
vessels. The trained RetinaNet model enables the 
automated detection of objects in CRI’s imagery. 
Using the labelled dataset, a denoising autoencoder 
(DAE) is trained to provide image enhancements 
for low-resolution target images, e.g., to provide a 
NIIRS5 quality image from a NIIRS4 input image. 
Once trained, the two ML algorithms will be 
utilized to process CRI’s wide area imagery in two 
stages. The first processing stage will identify all 
objects in an image. The second processing stage 
will provide image enhancement for each vehicle 
identified by the first processing stage. After both 
processing stages are complete, a new wide 
surveillance image will be reconstructed using the 
image enhanced targets. The process will also 
include a super resolution convolutional neural 
network (SR-CNN).  
 
3.3. Image Enhancements 

 
A denoising autoencoder can be trained to provide 
image enhancement for object targets that are 
identified in CRI imagery or any imagery for that 
matter. Denoising autoencoders have been 
demonstrated to provide image enhancement for 
noisy images in several industrial applications. We 
train denoising autoencoders using a large object 
dataset and can enhancement the imagery 
resolution. Of large interest, related to this topic, is 
how to optimize the denoising autoencoder’s neural 
network architecture to provide image 
enhancement. We have trained a proof of concept 
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denoising autoencoder with a small subset of data. 
The denoising autoencoder architecture is being 
further refined through trial and error testing. Using 
this mechanism has demonstrate that lower quality 
target images (e.g., NIIRS4) can be enhanced to 
provide NIIRS5 image quality. 
 
3.4. Detection Probability 

 
Metrics such as the probability of detection and 
false alarm rate are evaluated for the RetinaNet ML 
model. Image quality comparisons are used to 
demonstrate the denoising autoencoder’s image 
enhancement capability. We have begun the 
processing requirements of the ML techniques that 
are being optimized using hardware and software to 
support real-time processing.  
 
4. Applications 
 
There are a number of applications where the 
combination of CP and ML can be applied. Large 
harbor protection could be employed to detect and 
classify objects at much greater distances. Buttoned 
up ground vehicles could be navigated by humans 
or automated with only EO/IR sensors. This 
technology could also be used to as a sort of 
“invisible headlight” where a combination of EO 
and IR sensors are used for navigation in little or no 
lighting conditions.  
 
4.1. Ground Vehicle Imagery 
 
CRI has developed technology that incorporates N cameras in 
a single field of view. That is, we have developed a system 
where we can take any number of cameras and stich them into 
a single field of view image. There is a calibration process has 
to take into account 29 image regions, 450 measurements, and 
176 parameters, making the process computationally 
intensive. The current calibration process is performed in 
MATLAB but is now being ported over to the C++ language 
and making use of graphical processing units (GPUs). The 
result of the calibration is a configuration file that is read into 
the system software when starting up.  
 
The original system was intended for stationary, ground based 
systems, but it is now being developed for use in vehicles. 

Additionally, more than one system can be used, providing a 
seamless camera space that can cover an entire outside of a 
building or can provide for 360 coverage of a moving vehicle.  
 
The image below shows a low-resolution image of the G-iiS 
system used on a vehicle.  
 

   
 
The full image resolution is an 80mp image.  
 
4.2. City Ports and Borders 
 
The ability to bring this advanced CP and ML capabilities to 
ground based on boarders and ports such as those found 
around the San Diego area is a logical next step. Such 
implementations would provide a rich environment for 
machine learning, artificial intelligence, and computational 
photography.  
 
In fact, the environment and concepts of operations will 
require the evolution of high-end optics and sensors to low- 
and high-end optics, sensors, and software. These sensors will 
range from electro-optical, infrared, radar, and any other 
sensor that might be information for machine learning. There 
will certainly be large data storage needs. Identification and 
detection will be done with little information or low-quality 
information.  
 
While hardware will continue to improve, software 
capabilities in computational photography, machine learning, 
and artificial intelligence will advance the capabilities of 
these systems. Even older or less powerful hardware will 
excel with the advanced image processing capabilities.  
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